Stabilizers of Classes of Representable Matroids
نویسنده
چکیده
Let M be a class of matroids representable over a field F. A matroid N # M stabilizes M if, for any 3-connected matroid M # M, an F-representation of M is uniquely determined by a representation of any one of its N-minors. One of the main theorems of this paper proves that if M is minor-closed and closed under duals, and N is 3-connected, then to show that N is a stabilizer it suffices to check 3-connected matroids in M that are single-element extensions or coextensions of N, or are obtained by a single-element extension followed by a single-element coextension. This result is used to prove that a 3-connected quaternary matroid with no U3, 6 -minor has at most (q&2)(q&3) inequivalent representations over the finite field GF(q). New proofs of theorems bounding the number of inequivalent representations of certain classes of matroids are given. The theorem on stabilizers is a consequence of results on 3-connected matroids. It is shown that if N is a 3-connected minor of the 3-connected matroid M, and |E(M)&E(N)| 3, then either there is a pair of elements x, y # E(M) such that the simplifications of M x, M y, and M x, y are all 3-connected with N-minors or the cosimplifications of M"x, M"y, and M"x, y are all 3-connected with N-minors, or it is possible to perform a 2&Y or Y&2 exchange to obtain a matroid with one of the above properties. 1999
منابع مشابه
Weak Maps and Stabilizers of Classes of Matroids
Let F be a field and let N be a matroid in a class N of F-representable matroids that is closed under minors and the taking of duals. Then N is an F-stabilizer for N if every representation of a 3-connected member of N is determined up to elementary row operations and column scaling by a representation of any one of its N-minors. The study of stabilizers was initiated by Whittle. This paper ext...
متن کاملGrowth rate functions of dense classes of representable matroids
For each proper minor-closed subclassM of the GF(q)representable matroids containing all GF(q)-representable matroids, we give, for all large r, a tight upper bound on the number of points in a rank-r matroid inM, and give a rank-r matroid inM for which equality holds. As a consequence, we give a tight upper bound on the number of points in a GF(q)-representable, rank-r matroid of large rank wi...
متن کاملOn Matroids Representable over Gf (3) and Other Fields
The matroids that are representable over GF (3) and some other fields depend on the choice of field. This paper gives matrix characterisations of the classes that arise. These characterisations are analogues of the characterisation of regular matroids as the ones that can be represented over the rationals by a totally-unimodular matrix. Some consequences of the theory are as follows. A matroid ...
متن کاملAn Obstacle to a Decomposition Theorem for Near-Regular Matroids
Seymour’s Decomposition Theorem for regular matroids states that any matroid representable over both GF(2) and GF(3) can be obtained from matroids that are graphic, cographic, or isomorphic to R10 by 1-, 2-, and 3-sums. It is hoped that similar characterizations hold for other classes of matroids, notably for the class of near-regular matroids. Suppose that all near-regular matroids can be obta...
متن کاملM ay 2 00 9 An obstacle to a decomposition theorem for near - regular matroids ∗
Seymour’s Decomposition Theorem for regular matroids states that any matroid representable over both GF(2) and GF(3) can be obtained from matroids that are graphic, cographic, or isomorphic to R10 by 1-, 2-, and 3-sums. It is hoped that similar characterizations hold for other classes of matroids, notably for the class of near-regular matroids. Suppose that all near-regular matroids can be obta...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Comb. Theory, Ser. B
دوره 77 شماره
صفحات -
تاریخ انتشار 1999